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Abstract

A three-dimensional and time-dependent numerical model is
used to simulate thérmal convection imbedded in a shear flow in a
rotating atmosphere. The fluid is confined to a plane parallel
layer with periodic side boundaries, and the rotation vector is
tilted from the vertical to represent a low-latitude region. An
eastward mean flow is imposed which is constant with depth but
has a jet-like profile in latitude. The convection is driven by
a prescribed vertical temperature difference. Interactions
between the shear flow and the convection extract energy from the
mean flow and decrease the mean shear in the nonrotating case.
In the presence of rotation, however, the convection can feed
energy into the jet and enhance the mean shear. Mean meridional
circulations are also produced by the effects of rotation. The
Coriolis force on the vertical flows in these circulations
contributes to the changes in the mean zonal wind. Three
rotating cases are examined which show this behavior in varying
degrees. A simple mechanism is described which explains how the

convection can produce this countergradient flux of momentum in a
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wrotating layer. 'Although the system studied is highly idealized, -
it exhibits momentum fluxes and wave-like patterns which, for
certain parameter values, are similar to those observed on

Jupiter.
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%1.  INTRODUCTION

Thermal convection plays a central role in generating many
geophysical and astrophysical flows. In addition to its primary
role of transporting heat, convection can alsqo drive global
circulations in rotating stars and planets. Although meridional
circulations and differential rotation can be driven directly by
thermal gradients, convection has also been shown to be an
efficient driver of these flows [e.g. Gilman (1977), Busse (1982,
1983a), Hathaway and Somerville (1983) and references therein].

Gilman (1977), Glatzmaier (1984) and Gilman and Miller
(1986) have shown by numerical simulation that the Sun's
differential rotation is a natural consequence of the effects of
rotation on convection in a thick rotating spherical shell of
fluid. Weak meridional circulations are also produced in these
simulations. Gilman and Miller (1986) have also shown that the
shear in the differential rotation can feed back on the
convection, altering the shape of the convective eddies so that a
new balance is achieved in maintaining a stronger differential
rotation. Hathaway and Somerville (1986) have examined
additional examples of this positive feedback mechanism in
numerical simulations of convection imbedded in a mean flow with
a vertical shear. Nonlinear interations such as these, between
convective eddies and mean flows, may also play an important role
in driving the global circulations of Jupiter and Saturn.

Busse (1976) has suggested that large scale convection
within Jupiter and Saturn may be responsible for the multiple jet

streams seen in the differential rotation profiles of these



»*blanets. Observationally, Beebe et al. (1980), Ingersoll et al.
(1981) and Sromovsky et al. (1982) have found that the cloud
motions in Jupiter's atmosphere indicate a transfer of energy and
momentum from nonaxisymmetric eddies into the axisymmetric zonal
.
winés. The nature of these eddies remains a ;ubject of debate
and thermal convection cannot be ruled out. Models for the
internal structure of Jupiter and Saturn [Hubbard and
Smoluchowski (1973), Graboski et al. (1975), Slattery (1977),
DeCampli and Cameron (1979), and Hubbard and Horedt (1984)]
indicate that the thermal stratification is superadiabatic
throughout nearly all of their interiors. Recently, Ingersoll
and Pollard (1982) and Busse (1983b) have shown in more detail
how convection, in the form of columns aligned with the rotation
axis, may drive the zonal jets on these planets.

Here we consider the possibility that nonlinear interactions
between small scale thermal convection and a rotating shear flow
might also be important forAthe dynamics of the atmospheres of
Jupiter and Saturn. Our approach is to study a mechanism in
isolation rather than attempting to include all the necessary
physics required for a realistic simulation. The particular
mechanism of interest is illustrated in Figure 1. We consider a
sheared zonal wind in the form of an atmospheric jet stream and
include convective motions imbedded in this flow. If the
convection is distorted by the shear flow to form a chevron-like
or herringbone pattern then the effects of rotation can produce a
flux of momentum into the Jjet. Without rotation the convecting

fluid flows directly from an updraft to a downdraft. 1In this
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}gconvective flow pattern the fluid moving toward the maximum of
the jet carries westward momentum which converges on the jet and
decreases the eastward flow. With rotation the convective flow
is turned by the Coriolis force. This produces a component of

. .
the flow along the axes of the convective rolis. In this flow
pattern the fluid moving toward the maximum of the jet carries
eastward momentum which converges on the jet and increases the
eastward flow. This simplified explanation presumes the
existence of the jet as well as the production of a chevron-like
convection pattern. It neglects any competing processes. While
the relevance of this mechanism for Jupiter is uncertain, it does
show quite simply how convection in the presence of rotation
might feed momentum into a mean zonal flow.

The production of this chevron-like convection pattern
requires an interaction between the convection and the shear flow
which is similar in nature to the positive feedback mechanism
described by Gilman and Miller (1986) and Hathaway and Somerville
(1986). 1In order to determine whether such a pattern might be
generated, and to see how the convective motions interact with
the zonal wind, we numerically simulate the fully nonlinear
convective motions in a rotating shear flow. The three-
dimensional and time~dependent numerical model is described in
the next section. The results of the calculations are described
in the following section. The results illustrate the essential
features of a process by which convection might influence the

large-scale dynamics of rotating stars and planets.
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2. THE MODEL

We have chosen an idealized system for this study. Although
we ‘'use the full nonlinear equations for a fluid with both viscous
and thermal diffusion, we assume that the fluid is Boussinesq,
i.e.‘of constant density except for buoyancy effects due to
temperature. We use a plane parallel layer of fluid which is
positioned tangent to the planet at a latitude ¢ as shown in
Figure 2. Although we neglect the effects of curvature, we
include both the vertical and the horizonal components of the
rotation vector. Our representation of the influence of rotation
is quite general in that we have retained all of the Coriolis
terms rather than making a priori assumptions concerning their
relative magnitudes. We employ rigid (nonslip) top and bottom
boundaries, and use periodic side boundaries to represent an
infinite plane parallel layer. These periodic boundaries allow a
wide range of convective patterns to form in the layer but
preclude the use of curvature in the geometry. Again, we stress
that our purpose here is to study a mechanism, not to simulate
any actual atmospheric flow.

We impose an eastward zonal flow which is constant with

depth but varies with latitude, the y direction, according to
U (y) = A sin®(xy/2). (2.1)
Here 1A is the latitudinal extent of the computational domain and

A is the amplitude of the jet. This jet profile satisfies the

mass continuity and thermal energy equations and makes the zonal



‘flow periodic so that it satisfies the horizontal boundary
conditions. The top and bottom boundaries must also participate
in this flow, so that (2.1) is satisfied on the boundaries as
well as in the interior. 1If the boundaries were to remain at
rest’ the basic state would have a vertical sheir in addition to
the horizontal shear. This added shear would complicate the
physics and prevent us from examining this mechanism in
isolation.

This jet profile is externally imposed and maintained. The
source of the jet is not specified. It might be produced by the
columnar convection described by Busse (1976, 1983), by
baroclinic processes, by two-dimensional turbulent cascades or by
mean meridional circulations. Our concern in this paper is with
the interactions between the jet and thermally driven convective
motions. Although the convection cannot alter the forcing
mechanism for the jet, it can alter the jet itself by producing a
mean zonal flow which may change the jet profile.

To be consistent, we must also include a mean pressure
field, which depends upon both latitude and height, and the
imposed force or Reynolds stress which maintains the imposed jet
against viscous diffusion and the Coriolis force. The resulting
balance can then be removed from the equations for the
convection, thereby leaving the influence of the mean flow in the
advective terms only.

We make the governing equations dimensionless by using D,
the depth of the layer, as the unit of length, Dz/v, the viscous

diffusion time, as the unit of time and AT, the temperature



* gifference across the layer, as the unit of temperature.

The

dimensionless equations are then given by the mass continuity

equation,

Ttz o, (2.2)
the three components of the momentum equation.
_g.‘i + [u+U ] 4:—; + vg—y Lu+u 1 + w%— - 'I‘al/2 singv + 'I‘a]’l2 cos ¢w

= - %% + v2u (2.3)
-g% + [u+Uo] -g-:'-{- + v-g—;-; + w%‘zi + 'ral/2 sing¢u = - %I;- + 72v (2.4)
3 4 Lusu ] e B G a2 coseu = - 28 + B2 1 4 v2u (2.5)
and the thermal energy equation,
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is the Taylor number,
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(2.6)

(2.7)

(2.8)
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is the Rayleigh number and

Pr = - . (2-9)

is.the Prandtl number. Here Q@ is the rotation frequency, v is
the viscosity, x is the thermal diffusivity, a is the volumetric
coefficient of thermal expansion and g is the gravitational
acceleration. The perturbed quantities include (u, v, w), the
fluid velocity in the (x, y, z) direction, p, the pressure, and
T, the temperature. The unperturbed temperature, in these

dimensionless units, is given by

Equations (2.2) through (2.6) are solved numerically for the
perturbed quantities subject to the boundary conditions that (u,
v, w) and T vanish at the top and bottom boundaries and are
periodic in x and y. The numerical procedure we use is an
implicit finite difference technique suggested by Chorin (1968)
and described in detail by Somerville and Gal-Chen (1979). The
computational domain is one unit in the z (upward) direction by
10 units in the x (eastward) direction by 10 units in the y
(northward) direction. The calculation involves 57,600 grid
points in an array with 25 points in z, 48 points in x, and 43
points in y. One time step takes about 7 seconds on the CRAY1l

machines at the National Center for Atmospheric Research.



3. THE ANALYSIS

Four simulations were run with the numerical code. All had
Ra = 104, Pr = 1.0, ¢ = 20°, and A = 100. The rotation rate was
varied from one simulation to the next with Ta:=-0, 1 % 104, 3 x
104,.and 1 x 103. a1l four simulations were start;d'from rest by
introducing small random perturbaﬁions to the temperature
field. These perturbations initiate convective motions which
reach a statisticaly steady state after about 300 time steps.
Each case was run for a total of 1000 time steps.

To determine the effect of the convection on the jet we

average the x component of the momentum equation (equation 2.3)

over x and z to find

3<u> 3 <uv> -8 _ mat2 o ¥ =
s 3y + <v> 3y [<u>+Uo] Ta’s sin¢<v> + Ta’c cos¢<w>

2 2
3 <g> + <2 ;> (3.1)
Ay 9z

where

1 1 2
<a> = 3 | [ a(x,y.,z) dxdz (3.2)
0 O

represents an averaged quantity. From left to right in (3.1) we
see that the average zonal flow, <u>, induced by the convective
motions is influenced by the divergence of the momentum flux
<uv>, the latitudinal advection of the mean zonal flow, the
Coriolis force on a mean meridional flow, the Coriolis force on a
mean vertical flow and viscous diffusion. The mean zonal

velocity is given by



U= Uo + <> . (3.3)

The mean kinetic energy in the zonal wind is given by

% u? dy . (3.4)

>|
Sy,

KEx =

We can determine the balance that maintains this kinetic energy
by considering its time derivative and using (3.1) with an

integration by parts. We find

3KE A
3tx = }X- é [ <uv> %% + '1‘31]7,2 sing<v> U - 'I‘a]7/2 cos$<w>U] dy +
(3.5)
A 2 2
+ % | [vu d <;> + U <2 2>J dy .
0 dy -3z

For a steady state a balance is maintained between the source
terms (the first integral on the right hand side) and viscous
diffusion (the second integral on the right hand side). The
source terms include, from left to right, a countergradient flux
of momentum by the convective motions, a transfer of energy from
the y kinetic energy component by the Coriolis force, and a
transfer of energy from the z kinetic energy component by the
Coriolis force. The important source term is the first one since
this represents a net source of mean kinetic energy from the
fluctuating part of the flow rather than a transfer between

different components of the mean kinetic energy. Thus, a



ﬁbsitive correlation between the momentum flux <uv> and the mean

zonal wind gradient, %%. indicates that the convective motions

are feeding energy into the mean zonal flow. |
Our analysis of the four simulations inclu?es determining

the structure of the convective velocity and temperature fields

for each case together with calculations of the mean momentum and

energy balance.

3a. Ta =0

Figure 3 shows a three-dimensional perspective view of the
velocity and temperature fields for the final time step of the
nonrotating case (Ta = 0). Color is used to represent
temperature with yellow being hot and red being cold. The
velocity field is indicated by the trajectories of 700 markers
that are constrained to move along the three visible surfaces.
Although a chevron pattern is not produced by the convection in
this case, the effects of the shear flow are still quite
evident. The maximum in the imposed zonal flow occurs midway
between the northern and southern boundaries of the computational
domain illustrated in Figure 3. On either side of the maximum,
where the latitudinal shear is strongest, the convection forms
elongated cells which are aligned east-west with the mean flow.
The trajectories plotted on the upper surface show outflows from
the hot updrafts and inflows along the downdrafts. Typical
dimensionless velocities associated with the convective motions
are about 19 for this case and the heat flux is 2.45 times that

carried by thermal conduction alone.
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case. In addition to averaging over x and z we have also

Figure 4 shows the averaged quantities for this nonrotating

averaged over a time period covering the last half of the
simulation in obtaining these quantities. The left hand panel
shows the imposed zonal flow as a dotted line and the total zonal
flow in the presence of convection as a solid line. The decrease
in the maximum velocity from 100 to 96 and the increase in the
minimum from O to 2 shows quite readily that energy and momentum
are being extracted from the impdsed zonal flow. This conclusion
is supported by the analysis shown in the right hand panel of
Figure 4. Here the shear, 3U/8y, is plotted as a solid line and
the momentum flux, <uv>, is plotted as a dashed line. The strong
anticorrelation between these two quantities is further evidence
that energy is extracted from the mean zonal wind by a down-
gradient flux of zonal momentum. Integrating the product of
these two quantities over y gives a net rate of loss of zonal
kinetic energy of -923 while the mean zonal kinetic energy level

is 1875.

3b. Ta = 1 x 10%

Figure 5 shows the temperature and velocity fields for the
rotating case with Ta = 1 x 104. Although a chevron pattern is
not well formed there is some suggestion of one. Where the shear
is strong the convective rolls tend to be angled in the same
sense as illustrated in Figure 1, especially on the northern edge
of the jet. The fluid motions show some turning by the Coriolis

force but substantial flows parallel to the axes of the
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gonvective rolls are not obvious. Typical convective velocities
»;re about 15 and the heat flux is reduced to 1.95 times the
conductive heat flux.

Figure 6 shows the averaged quantities for this rotating
case. The mean zonal flow is nearly equal to the imposed zonal
flow except near the jet minima where the mean flow becomes a
weak westward flow. The mean shear and the momentum flux plotted
in the right hand panel do not appear to be well correlated.
However, the integral of their product gives a small net rate of
gain of zonal kinetic energy of +48 for a mean zonal kinetic
energy of 1875.

For this rotating case we must also consider the Coriolis
terms in the balance equations (3.1) and (3.5). The Coriolis
force acting on a mean meridional flow or a mean vertical flow
can also alter the momentum and energy in the mean zonal wind.
We find that the mean meridional flow, <v>, is extremely small.
Although weak meridional circulations are induced, they have
oppositely directed flows in the upper and lower halfs of the
layer which cancel to give <v> = 0. There is, however, a mean
vertical flow, <w>, associated with these induced circulations.
Thus, in equation (3.1) for the mean zonal momentum the two
important terms are the momentum flux divergence, 3<uv>/3y, and
the Coriolis force, T;%Zcos¢<w>, on the mean vertical flow.
These two quantities are plotted as functions of y in Figure 7.
For this case these mean quantities appear to be noisy and
insignificant with the exception of mean vertical flows near the

jet minima with rising motions on the southern edge and sinking
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motions to the north. These mean vertical flows tend to produce
a westward flow near the southern edge and an eastward flow to
the north as is seen in the mean zonal flow plotted in Figure

6. The net rate of loss of mean zonal kinetic energy due to this

Coriolis term is -67. s

3c. Ta = 3 x 104

Figure 8 shows the velocity and temperature fields for the
moderately rotating case with Ta = 3 x 104. Here a chevron
pattern is fairly well established. The convection forms a
herringbone pattern around the jet maximum with slanted rolls in
the regions of strong shear on either side. A motion picture was
produced of the time evolution of the convection. It shows the
wavelike cells in the jet maximum propagating eastward at about
the flow speed of the jet maximum. The slanted convection rolls
on either side of the maximum are continually sheared by the flow
and repeatedly detached and then reconné;ted with the waves in
the jet maximum. The flow within these convective elements is
turned by the Coriolis force to produce substantial flows along
the axes of these features. The typical convective velocities in
this case are about 11 and the dimensionless heat flux is 1.60.

The averaged quantities for this case are shown in Figure
9. There is a stronger eastward flow just to the north of the
jet maximum and a westward flow is produced at the minimum.
There appears to be a fairly strong positive correlation between
the momentum flux and the velocity gradient as shown in the right

hand panel. The integral of the product of these two quantities
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‘gives a net rate of gain of mean zonal kinetic energy of +259.
This result indicates that energy and momentum are being fed into
the mean zonal wind by this counter gradient flux of zonal
momentum. |

“In this case, as in the previous one, the mean meridional
flow, <v>, is insignificant, but the mean vertical flow plays a
substantial role. The momentum flux divergence and the Coriolis
term are plotted for comparison in Figure 10. Both are
significant, but they tend to be opposed to one another. The
Coriolis term appears to dominate, although weakly, in several
places. The Coriolis term appears to be largely responsible for
the westward flow in the jet minimum where the momentum flux
divergence vanishes. The eastward flow on the northern edge of
the jet maximum can be attributed to a positive correlation
between the two driving terms at that location. For the mean
kinetic energy, this Coriolis term gives a net rate of gain of

kinetic energy of +113.

3d. Ta =1 x 10°

The velocity and temperature fields for the rapidly rotating
case with Ta = 1 x 10° are shown in Figure 11. In this case, a
new phenomenon appears. The convection is confined to the region
of the jet maximum. This effect can be attributed to the tilted
rotation vector. Hathaway and Somerville (1983) showed that the
tilted rotation vector favors convection in the form of rolls
aligned north-south, parallel to the horizontal component of the

rotation vector. The previous cases indicate that the horizontal
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ighear on either side of -the jet maximum favors convection in the
form of rolls aligned with the shear. We propose that for this
rapidly rotating case the convection is stabilized in these
regions by the competition between the shear flow and the tilted
rotation vector for opposing roll orientation iHathaway and
Somerville; 1985, 1986). The stabilizing effect of rotation is
also evident in the slower convective velocities of 6 and the
weaker heat flux (1.19 in dimensionless units).

The averaged quantities for this case are plotted in Figure
12. The mean zonal flow exhibits an increase in the eastward
flow on the northern edge of the jet maximum and little change
from the imposed flow elsewhere. The right hand panel shows that
there is a positive correlation between the momentum flux and the
velocity gradient. The integral of the product of these two
gquantities gives a rate of gain of kinetic energy of +68. This
is much smaller than in the previous case as might be expected
from the weakened convection.

Figure 13 shows the momentum flux divergence and the
Coriolis term for this case. Again, these quantities are
anticorrelated and the Coriolis term appears to be slightly
stronger. The eastward flow that is induced on the northern edge
of the jet maximum is the product of a local positive correlation
between these two sources of zonal momentum. In spite of the
apparent strength of this Coriolis term in the momentum balance,
we find that it plays a lesser role in the kinetic energy
balance. The rate of loss of mean zonal kinetic energy due to

this term is -9.
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The results of the analysis for these four simulations are
.gummarized in Table 1.  fhe top line indicates the Taylor number
or rotation rate for each of the cases studied. The second line
givés the magnitude of the convective velocities for each case.
The third line gives the dimensionless heat flgx (Nusselt
numbér). The fourth line gives the rate of gain or loss of mean
zonal Xinetic energy due to the convective momentum flux and the
last line gives the rate of change of mean zonal kinetic energy
due to the Coriolis force on the induced mean vertical motions.

Several trends can be seen in this data. The convective
velocities and the heat flux are diminished as the rotation rate
is increased from one case to the next across Table 1. This
illustrates the stabilizing effect of rotation on the convection
(e.g. Hathaway and Somerville, 1983). The convective momentum
flux gives a rapid loss of mean zonal kinetic energy for Ta = 0
but gives increasingly larger gain rates for Ta = 1 X 104 and Ta
= 3 x 10%. The rate of gain decreases for Ta =1 x 1053 primarily
because of the weaker convection for that case.

A systemmatic trend is not evident in the rate of change of
mean zonal kinetic energy due to the Coriolis force on the mean
vertical flow. For Ta =1 x 104 it gives a rate of loss of
kinetic energy that is slightly greater than the rate of gain due
to the momentum flux. For Ta = 3 x 104 it becomes a source of
kinetic energy that augments the gain due to the momentum flux.
For Ta = 1 X 105 it gives a loss again, albeit a small loss

compared to the gain by the momentum f£lux.
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4. CONCLUSIONS

We have used a three-dimensional and time-dependent
numerical model to simulate convection in the presence of a jet-
like zonal flow. We find that rotation plays a vital role in the
dynamics. Without rotation the convective motions extract‘énergy
and momentum from the mean zonal flow. With rotation the
convective motions feed energy and momentum into the mean flow.

Anisotropy in the convection is an instrumental part of this
interaction between the perturbations and the mean flow. The
shape of the convection cells is influenced by both the zonal
flow and the tilted rotation vector. Hathaway and Somerville
(1983) showed that the tilted rotation vector favors convection
in the form of rolls oriented north-south, parallel to the
rotation axis. Here we find that in the absence of rotation the
horizontal shear in the zonal flow favors convection in the form
of rolls oriented east-west, parallel to the zonal flow. For the
first two rotating cases, with Ta = 1 x 104 and Ta = 3 x 104,
these two processes produce convection in the form of a chevron
or herringbone pattern. For the rapidly rotating case, with Ta =
1 x 107, the competition between these two processes tends to
stabilize the convection where the shear is strong, leaving
north-south oriented convective rolls where the shear vanishes.

The fluid flows within these anisotropic convective patterns
drive large scale circulations. As described by Hathaway and
Somerville (1983), a mean flow with vertical shear is produced in
the presence of the tilted rotation vector alone. This flow is

directed to the southeast along the bottom of the layer and to
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%he northwest along the top. Since the vertical average of this
flow is zero it does notAcontribute to the dynamics of the zonal
jet. However, superimposed on this flow is a series of
meridional circulations with rising motions on the southern edges
of the jet m?ximum and minimum and sinking motfons on the
northern edges. The Coriolis force on these induced mean
vertical motions is important for the zonal jet. Eastward flows
are produced in the downdrafts and westward flows are produced in
the updrafts.

The convective motions can also feed energy and momentum
directly into the mean zonal flow by the mechanism illustrated in
Figure 1. The Coriolis force turns the convective flow to
introduce a velocity component along the axes of the convective
rolls. If the convection forms a herringbone pattern, this gives
a counter-gradient flux of momentum which enhances the mean zonal
flow. The combined effects of rotation and the shear flow itself
conspire to produce this herringbone pattern. The shear flow
favors convective rolls aligned with the shear while rotation
favors convective rolls aligned with the tilted rotation
vector. When both of these effects are of similar magnitude the
convective rolls are tilted from a north-south orientation and
angle into the jet streams to produce the herringbone pattern and
the counter-gradient flux of zonal momentum.

This effect may be evident in the cloud motions in Jupiter's
atmoséhere (Beebe et al., 1980; Ingersoll et al., 1981; Sromovsky
et al., 1982). A distinct chevron pattern is visible in the

clouds surrounding the prominent eastward jet at about 23° north
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:* latitude as shown in Figure 14. The analyses of the cloud
motions in this region indicate the presence of a counter-
gradient flux of momentum. Although the source and nature of
these cloud motions is uncertain, thermal convection and the
effects seen in these simulations may play ad'important role.

The convective patterns and the dynamical properties of the
flows produced in these idealized simulations are further
evidence that convection can do much more than simply transport
heat in stars and planets. The effects of rotation and the
interactions between convection and large scale mean flows can
have important consequences for the global circulation patterns

of these astrophysical objects.
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FIGURE CAPTIONS

Figure 1. Schematic illustration showing how convection might

interact with a jet-like mean flow. Part a shows convection in a

chevron or herringbone pattern in the absence of rotation. The

-

convéctive motions carry fluid directly from warm updrafts to
cold downdrafts. Momentum is extracted from the mean flow by
these motions. Part b shows the effect of rotation on the

convective motions. The Coriolis force turns the fluid flow
along the axes of the convective rolls. Here momentum is fed

into the mean flow.

Figure 2. The geometry and orientation of the computational

domain. The plane-parallel layer is positioned tangent to the
spherical shell at a latitude ¢ so that the rotation vector is
tilted from the vertical. The x-~-direction is eastward, the y-

direction is northward, and the z-direction is upward.

Figure 3. The velocity and temperature fields for the
nonrotating case, Ta = 0. Temperature is represented by color
with yellow being hot and red being cold. The convective
velocity field is illustrated by the trajectories of small
markers. The imposed flow is constant with depth and vanishes

the southern and northern boundaries. It has its maximum

at

eastward velocity midway between these two boundaries. On either

side of the jet maximum the convection forms rolls which tend to

be aligned with the shear flow.
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'%'Figure 4. The mean quantities for the case with Ta = 0. The
imposed zonal flow is represented by the dotted line in the left
hand panel. The mean zonal flow in the presence of convection is
represented by the solid line. The mean flow is noticeably
weaker than the imposed flow. The right hanéﬁpanel shows the
momentum flux <uv> as a dashed line and the gradient of the mean
flow as'a solid line. The anticorrelation of these two
quantities indicate that momentum and energy are extracted from
the imposed flow by a downgradient £flux of momentum in the

convection.

Figqure 5. The velocity and temperature fields for the rotating
case with Ta = 1 x 104. The convective rolls are narrower than
in the nonrotating case and show a tendency to be slanted in the

direction of the shear.

Figure 6. The mean gquantities for the rotating case with Ta = 1
x 104. The left hand panel shows that the mean flow is only
slightly changed from the imposed flow. The right hand panel
shows a weak correlation between the momentum flux and the
gradient of the mean flow which suggests a countergradient flux
of momentum is produced by the effects of rotation on the

convection.
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Figure 7. A comparison of the momentum flux divergence, dotted,
line, and the Coriolis force on the induced mean vertical flow
for the case with Ta =1 x 104. Both terms are fairly weak and

noisy except for the Coriolis force on the mean vertical motions

-
-

around the jet minimum.

Figure 8. The velocity and temperature fields for the rotating
case with Ta = 3 x 10%. The convection forms a fairly distinct
chevron or herringbone pattern. The Coriolis force turns the
convective flow to produce substantial flows along the axes of

these features. This produces a flux of momentum into the mean

flow.

Figure 9. The mean quantities for the rotating case with Ta = 3
x 10%. The mean flow is definitely stronger than the imposed
flow. The momentum f£flux is well correlated with the gradient of
the mean flow. This indicates that a countergradient flux of
momentum is produced by the effects of rotation on the

convection.

Figure 10. A comparison of the momentum flux divergence and the
Coriolis force on the mean vertical flow. Both terms are

substantial and tend to be opposed to each other.
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Figure 11. The velocity and temperature fields for the rapidly

rotating case with Ta = 1 x 103, The convection is concentrated

in the vicinity of the jet maximum and forms a series of cells

that are elongated in the north-south direction.

Figure 12. The mean quantities for the rapidly rotating case
with Ta = 1 x 10°. The mean zonal flow is enhanced in the

vicinity of the jet maximum but is nearly equal to the imposed
flow elsewhere. The momentum flux and the gradient of the mean

zonal flow are correlated but the flux is not as strong as in the

more slowly rotating case.

Figure 13. A comparison of the momentum flux divergence and the

Coriolis force on the mean vertical flow. Both sources of zonal

momentum are strong but they tend to be opposed to each other.

Figure 14. A chevron-like cloud pattern seen in Jupiter's north

temperature belt by Voyager 2. The north temperature current

runs east-west through the center of this region with wind speeds

near 130 m/s.
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Table 1

Ta 0 1 x 10% 3 x 104 1 x 103
1 . 1/2 \‘
[f (<0 '+ ev? + w?>)az] ® 19 15 11 6
o
1
[1 + [ <wr>dz] 2.45 1.95 1.60 1.19
0
1 A du
[x | <uv> Iy ay] -923 +48 +259 +68
0
1 Y
- [7 [ Ta’2 cos¢ <w> Udy] 0 -67 +113 -9
0
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